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Abstract

Motivated by problem settings such as the determination of motifs in proteins or molecular docking, we present
a generic framework for finding geometric similarities between two molecular shapes. Our approach is based on
minimizing a distance between the two given shapes, where a problem-specific distance function can be chosen from
a certain class of distance measures, the so-called relational distance measures.
The setting we investigate is as follows: we are given two molecules, modeled as point sets (or, in some cases,
as point sequences) P and Q in R

3, where each point represents a chemical entity such as a single atom or an
amino acid of a protein. Furthermore, we are given a distance measure d between point sets such that d(P,Q)
measures the resemblance of two molecules in a fixed spatial position, with values of d(P,Q) close to zero indicating
large resemblance; the resemblance usually changes when one of the molecules, say Q, is rotated or translated
(i.e., transformed by a rigid motion g). In this setting, many typical pattern matching problems involving molecular
structures can be stated as either determining the global resemblance between P and Q or finding largest common
substructures of P and Q w.r.t. some suitable distance measure d.

Problem Setting

We are intested in two settings:

•Global resemblance between P and Q: It is our goal to find a transformation g that minimizes the distance between
P and Q, i.e., arg ming∈RM(3)d(P, gQ), with RM(3) denoting the set of all rigid motions in three dimensions and

gQ denoting Q transformed by g ∈ RM(3).

• Largest common substructures of P and Q: Given a fault tolerance ε ≥ 0, we want to determine largest possible
substructures P ′ of P and Q′ of Q such that d(P ′, gQ′) ≤ ε for some transformation g.

Relational Distance measures

• Given two families of points P = 〈p0, . . . , pm〉 and Q = 〈q0, . . . , qn〉 as well as a fault tolerance ε ≥ 0, we obtain
a relation

R(P,Q, ε) := {(i, j) | ‖pi − qj‖ ≤ ε} ⊆ [1 : m] × [1 : n].

• If deciding whether d(P,Q) ≤ ε can be done by looking at R(P,Q, ε), we say that the distance measure d is
relational.

•More formally: We say that a distance measure d is relational iff for all m,n > 0 there is a set of relations
R(d,m, n) ⊆ 2[1:m]×[1:n] so that

d(P,Q) ≤ ε ⇐⇒ R(P,Q, ε) ∈ R(d,m, n).

for all point sequences P and Q of lengths m and n, respectively.

• Certain chemical and/or physical features at the points pi and qj can be taken into account as well.

Many distance measures considered in related work are relational distance measures

•Directed Hausdorff distance: [6, 10, 5]: dH(Q,P ) := maxq∈Q minp∈P d(q, p).

•Undirected Hausdorff distance: [10, 5]: dH(P,Q) := max{dH(P,Q), dH(Q,P )}.

•Botteleneck Distance: [3, 4]: dB(P,Q) = minπ∈Sn
maxi∈[1:n] ‖pπ(i)− qi‖, where Sn denotes the set of all permu-

tations of [1 : n].

•Discrete Fréchet distance: [9, 8, 7]: dF(P,Q) = min(κ,λ) ‖P ◦ κ − Q ◦ λ‖∞, where κ and λ range over the set

of all increasing and surjective mappings from [0 : m + n] to [0 : m] and [0 : m + n] to [0 : n], repsectively.

Candidate Transformations

• Candidate transformations are the building blocks for our pattern matching algorithms.

• Let V = R
3, and let A,B ∈ V 3, where A = (a1, a2, a3) and B = (b1, b2, b3).

• Two points a1, a2 define a ray [a1; a2].

• Three points a1, a2, a3 define a half plane [a1; a2; a3].

• We say that g ∈ RM(3) is an (A,B)-candidate transformation iff g establishes the following three conditions of
coincidence, collinearity and coplanarity between A and gB:

(Coincidence) a1 = gb1 and
(Collinearity) [a1; a2] = [gb1; gb2] and
(Coplanarity) If neither a1, a2, a3 nor b1, b2, b3 are collinear, we have [a1; a2; a3] = [gb1; gb2; gb3].

• Some care needs to be taken for degenerate cases (i.e., if either the points in A or the points in B are collinear)

• If neither the three points of A nor the three points of B are collinear, the candidate transformation is uniquely
defined.

Global resemblance between P and Q

•Goal: Find a transformation g ∈ RM(3) that minimizes d(P, gQ).

• Obtain more efficient algorithms for approximate answer: compute g ∈ RM(3) such that d(P, gQ) ≤ cε, for some
fixed c > 0 and any ε > infg∈G d(P, gQ)

• Generalizing results from [5, 4, 1], we obtain the following algorithm:

Algorithm 1 (Global Resemblance)

Input: P ∈ V [1:m] and Q ∈ V [1:n]; relational distance measure d.
Output: g ∈ RM(3) such that d(P, gQ) ≤ 16ε, for any ε > infg∈G d(P, gQ).

Candidate-Match(P,Q,d)
D := ∞;

for (i1, i2, i3) ∈ {(µ1, µ2, µ3) ∈ [1 : m]3 | µ1 6= µ2, µ1 6= µ3, µ2 6= µ3}

for (j1, j2, j3) ∈ {(ν1, ν2, ν3) ∈ [1 : n]3 | ν1 6= ν2, ν1 6= ν3, ν2 6= ν3}
A := (pi1, pi2, pi3);
B := (qj1

, qj2
, qj3

);
Compute an (A,B)-candidate transformation g;
d := d(P, gQ);
if (d < D) then D := d; h := g;

return h;
end.

•Complexity: O(m3n3T (d,m, n)), where T (d,m, n) denotes the time required for computing d(P,Q).

• Time complexity can be reduced to O(m2nT (d,m, n)) if d has a reference point [2] or is right-complete, see [7]
for details.

•Ratio of approximation: In practice, the ratio of approximation can be expected to be lower than 16, see [5].

Largest common substructures of P and Q

•Goal: Determine LCSC (P,Q,C) := maxg∈RM(3) C(P, gQ), where C is a function measuring the size of a common
substructure of two families of points.

•Requirements for C: C needs to be relational in slighlty different sense, see below.

• LCSC (P,Q,C) can be computed using Algorithm 1 by exchanging

d := d(P, gQ);
if (d < D) then D := d; h := g;

→
c := C(P, gQ);
if (c > C) then C := c; h := g;

• Example: Fix some ε ≥ 0 and choose C := Cε(P,Q) as the longest possible length |P ′| + |Q′| of common
subcurves P ′ of P and Q′ of Q such that dF(P ′, Q′) ≤ ε
 suitable distance measure for protein backbones;
 Cε is relational in the sense that Cε(P,Q) can be determined from R(P,Q, ε).

•Quality of approximation: Let g denote the transformation computed by the above algorithm. Then, we have

Cε(P, gQ) ≥ max
h∈RM(3)

Cε/16(P, hQ),

• The longest common subcurve of P and Q can be seen as a motive shared by the two proteins.

Conclusion and Perspective

• The approach presented here works for minimizing arbitrary relational distance measures as well as maximizing
relational target functions.

• Using dF, the approach is suitable for aligning protein backbones.

• Generalizes to multiple structure alignments.
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