Abstract: MATH/CHEM/COMP 2002, Dubrovnik,
June 24-29, 2002
|
DEUTERIUM ISOTOPE EFFECTS IN 13C NMR
SPECTRA
Drazen Vikic-Topic and Zeljko Marinic Rudjer Boskovic Institute, NMR Center,
POB 180, HR-1002 Zagreb,Croatia Deuterium is the most often
studied isotope due to easy of its incorporation into the molecules as well
as because of large fractional H/D mass change. Deuterium substitution causes
some peculiar effects in molecules e.g.
optical activity in CXYHD, slight dipole moment (10-2-10-4
D) in monodeuterated benzene and acetylene, which enables the measuring of
pure rotational spectra of these compounds and deuterium isotope effects on 13C
NMR chemical shifts over many chemical bonds. Long range deuterium isotope
effects (LRDIE) on 13C NMR chemical shifts have been found in
extended p-electron molecules even up through twelve bonds
(ca. 0.1 Hz). Deuterium
substitution causes shielding of directly deuterated carbon as well as nearby
carbon atoms, giving rise to upfield chemical shifts. Contrary to that, for
LRDIE both upfield and downfield shifts of carbon signals are observed. The
LRDIE have a pattern of sign alternation which resembles that of p-polarization effects of substituents. The calculations of LRDIE are
still challenging because of their low magnitude (0.5-300 ppb) and not
completely developed theory of isotope effects through many bonds. Isotope
effects on chemical shifts are interpreted in terms of vibrational and
rotational averaging of nuclear shielding. The subtle changes in average bond
lengths and average bond angles accompany deuteration due to differences in
zero-point vibrational motion and anharmonicity between C-H and C-D bonds. In
calculations of LRDIE at least two contributions have to be taken into
account: the secondary change in shielding at remote Experimental LRDIE on 13C chemical shifts and their correlations with differences in shielding and charges between protonated and deuterated molecules will be discussed. |